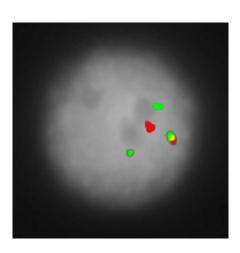


Order No.: D-5126-100-OG

Description

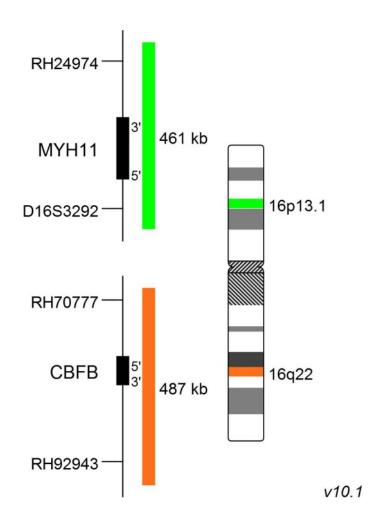

XL CBFB/MYH11 plus is designed as a dual fusion probe. The orange labeled probe spans the breakpoint at 16q22 (CBFB), and the green labeled probe spans the breakpoint at 16p13 (MYH11).

Clinical Details

Acute myeloid leukemia with inv(16)(p13.1;q22) and t(16;16)(p13.1;q22) is listed in the World Health Organization classification of tumors of the haematopoietic and lymphoid tissues. These recurrent rearrangements are present in about 10% of young AML patients. In cases with inv(16)/t(16;16), the core binding factor b (CBFB) gene on 16q22 is fused with the smooth muscle myosin heavy chain gene (MYH11) on 16p13.1. Patients carrying inv(16)/t(16;16) usually have a good prognosis. Cryptic insertions with no indication in cytogenetic analyses have been published. In these cases, a partial insertion of MYH11 into CBFB, or a partial insertion of CBFB into the MYH11 gene was observed. FISH probes with a break-apart design might overlook this cryptic rearrangement because no separation of flanking regions of CBFB occurs whereas translocation/dual fusion FISH probes are indicating this kind of cryptic rearrangement. FISH is a complementary method for the detection of inv(16)/t(16;16) increasing the sensitivity in combination with conventional cytogenetics. Furthermore, FISH is a valuable tool for cases without assessable metaphases.

Literature:

- Fröhling et al (2005) Haematologica 90:194-199
- Van Obbergh et al (2014) Cancer Genetics 207:231-232
- Zhang et al (2017) Adv in Mod Onc Res 3:12-14


XL CBFB/MYH11 plus hybridized to bone marrow cells. One aberrant interphase is shown. The expected normal signal pattern of XL CBFB/MYH11 is two green and two orange signals, representing the two normal CBFB and MYH11 loci. The image above shows the relatively rare case of a partial insertion of MYH11 into CBFB. The aberrant signal pattern of this cryptic insertion is two green, one orange and one colocalization/fusion signal. The most common aberrations are the pericentric inversion inv(16) and the reciprocal translocation t(16;16) with breakpoints in CBFB and MYH11. This causes a split of the orange and green signal, resulting in two green-orange colocalization/fusion signals. The remaining normal copies of CBFB and MYH11 are contributing one green and orange signal each.

Clinical Applications:

■ AML

FACTSHEET

Normal cell: The expected signal pattern is two green and two orange signals, 2G2O.	
Aberrant cell: Both, inv(16) and t(16;16), result in the signal pattern one green, one orange and two colocalization/fusion signal, 1G1O2GO.	
Aberrant cell: An insertion of MYH11 (16p13.1) into CBFB (16q22) results in the signal pattern two green, one orange and one colocalization/fusion signal, 2G1O1GO.	
Aberrant cell: An insertion of CBFB (16q22) into MYH11 (16p13.1) results in the signal pattern one green, two orange and one colocalization/fusion signal, 1G2O1GO.	

MetaSystems Probes

MetaSystems Probes GmbH (Headquarters)

1. Industriestrasse 7 68804 Altlussheim, Germany tel +49 6205 2927 60 fax +49 6205 2927 29 info@metasystems-probes.com

MetaSystems Group, Inc.

70 Bridge Street Newton, MA 02458, USA tel +1 6179 2499 50 | fax +1 6179 2499 54 info@metasystems.org

MetaSystems S.r.l.

Via Gallarate 80 20151 Milano, Italy tel +39 0236 7587 51 fax +39 0245 3753 03 info@metasystems-italy.com

MetaSystems India Pvt., Ltd.

No. 1/1, 1st Floor, 1st Main Rd., 2nd cross Thimmaiah Garden, R T Nagar Bangalore Karnataka, 560 032, India tel +91 9535 7788 01 info@metasystems-india.com

MetaSystems Asia Co., Ltd.

Unit 108, 1/F, Bio-Informatics Centre No. 2 Science Park West Avenue Hong Kong Science Park Shatin, New Territories, Hong Kong tel +852 2587 8333 | fax +852 2587 8334 info@metasystems-asia.com

Document No. PFS-D5126-2018-01-01-S © 2018 by MetaSystems Probes

FACTSHEET

