Filter by Keyword

Filter by Product

Scientific Reports, 8(1), 1141

First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness

Cirrone, GAP, Manti, L, Margarone, D, Petringa, G, Giuffrida, L, Minopoli, A, Picciotto, A, Russo, G, Cammarata, F, Pisciotta, P, others

Protontherapy is hadrontherapy’s fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy’s superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11B → 3α reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy’s ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated.

Molecular cell

DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination.

Biehs, Ronja, Steinlage, Monika, Barton, Olivia, Juhász, Szilvia, Künzel, Julia, Spies, Julian, Shibata, Atsushi, Jeggo, Penny A, Löbrich, Markus

Canonical non-homologous end joining (c-NHEJ) repairs DNA double-strand breaks (DSBs) in G1 cells with biphasic kinetics. We show that DSBs repaired with slow kinetics, including those localizing to heterochromatic regions or harboring additional lesions at the DSB site, undergo resection prior to repair by c-NHEJ and not alt-NHEJ. Resection-dependent c-NHEJ represents an inducible process during which Plk3 phosphorylates CtIP, mediating its interaction with Brca1 and promoting the initiation of resection. Mre11 exonuclease, EXD2, and Exo1 execute resection, and Artemis endonuclease functions to complete the process. If resection does not commence, then repair can ensue by c-NHEJ, but when executed, Artemis is essential to complete resection-dependent c-NHEJ. Additionally, Mre11 endonuclease activity is dispensable for resection in G1. Thus, resection in G1 differs from the process in G2 that leads to homologous recombination. Resection-dependent c-NHEJ significantly contributes to the formation of deletions and translocations in G1, which represent important initiating events in carcinogenesis.

Digital object identifier (DOI): 10.1016/j.molcel.2016.12.016

J Radiat Res, 57(3), 220–226
June, 2016

Analysis of chromosome translocation frequency after a single CT scan in adults.

Abe, Yu, Miura, Tomisato, Yoshida, Mitsuaki A., Ujiie, Risa, Kurosu, Yumiko, Kato, Nagisa, Katafuchi, Atsushi, Tsuyama, Naohiro, Kawamura, Fumihiko, Ohba, Takashi, Inamasu, Tomoko, Shishido, Fumio, Noji, Hideyoshi, Ogawa, Kazuei, Yokouchi, Hiroshi, Kanazawa, Kenya, Ishida, Takashi, Muto, Satoshi, Ohsugi, Jun, Suzuki, Hiroyuki, Ishikawa, Tetsuo, Kamiya, Kenji, Sakai, Akira

We recently reported an increase in dicentric chromosome (DIC) formation after a single computed tomography (CT) scan (5.78-60.27 mSv: mean 24.24 mSv) and we recommended analysis of 2000 metaphase cells stained with Giemsa and centromere-FISH for dicentric chromosome assay (DCA) in cases of low-dose radiation exposure. In the present study, we analyzed the frequency of chromosome translocations using stored Carnoy's-fixed lymphocyte specimens from the previous study; these specimens were from 12 patients who were subject to chromosome painting of Chromosomes 1, 2 and 4. Chromosomes 1, 2 and 4 were analyzed in ∼5000 cells, which is equivalent to the whole-genome analysis of almost 2000 cells. The frequency of chromosome translocation was higher than the number of DICs formed, both before and after CT scanning. The frequency of chromosome translocations tended to be higher, but not significantly higher, in patients with a treatment history compared with patients without such a history. However, in contrast to the results for DIC formation, the frequency of translocations detected before and after the CT scan did not differ significantly. Therefore, analysis of chromosome translocation may not be a suitable assay for detecting chromosome aberrations in cases of low-dose radiation exposure from a CT scan. A significant increase in the frequency of chromosome translocations was not likely to be detected due to the high baseline before the CT scan; the high and variable frequency of translocations was probably due to multiple confounding factors in adults.

Digital object identifier (DOI): 10.1093/jrr/rrv090

Genes Chromosomes Cancer, 55(1), 60–68
January, 2016

Functional characterization, localization, and inhibitor sensitivity of the TPR-FGFR1 fusion in 8p11 myeloproliferative syndrome.

Malli, Theodora, Buxhofer-Ausch, Veronika, Rammer, Melanie, Erdel, Martin, Kranewitter, Wolfgang, Rumpold, Holger, Marschon, Renate, Deutschbauer, Sabine, Simonitsch-Klupp, Ingrid, Valent, Peter, Muellner-Ammer, Kirsten, Sebesta, Christian, Birkner, Thomas, Webersinke, Gerald

Myeloid and lymphoid neoplasms with fibroblast growth factor receptor 1 (FGFR1) abnormalities, also known as 8p11 myeloproliferative syndrome (EMS), represent rare and aggressive disorders, associated with chromosomal aberrations that lead to the fusion of FGFR1 to different partner genes. We report on a third patient with a fusion of the translocated promoter region (TPR) gene, a component of the nuclear pore complex, to FGFR1 due to a novel ins(1;8)(q25;p11p23). The fact that this fusion is a rare but recurrent event in EMS prompted us to examine the localization and transforming potential of the chimeric protein. TPR-FGFR1 localizes in the cytoplasm, although the nuclear pore localization signal of TPR is retained in the fusion protein. Furthermore, TPR-FGFR1 enables cytokine-independent survival, proliferation, and granulocytic differentiation of the interleukin-3 dependent myeloid progenitor cell line 32Dcl3, reflecting the chronic phase of EMS characterized by myeloid hyperplasia. 32Dcl3 cells transformed with the TPR-FGFR1 fusion and treated with increasing concentrations of the tyrosine kinase inhibitors ponatinib (AP24534) and infigratinib (NVP-BGJ398) displayed reduced survival and proliferation with IC50 values of 49.8 and 7.7 nM, respectively. Ponatinib, a multitargeted tyrosine kinase inhibitor, is already shown to be effective against several FGFR1-fusion kinases. Infigratinib, tested only against FGFR1OP2-FGFR1 to date, is also efficient against TPR-FGFR1. Taking its high specificity for FGFRs into account, infigratinib could be beneficial for EMS patients and should be further investigated for the treatment of myeloproliferative neoplasms with FGFR1 abnormalities.

Digital object identifier (DOI): 10.1002/gcc.22311

Sci Rep, 6, 32510

Replication Timing of Human Telomeres is Conserved during Immortalization and Influenced by Respective Subtelomeres.

Piqueret-Stephan, Laure, Ricoul, Michelle, Hempel, William M., Sabatier, Laure

Telomeres are specific structures that protect chromosome ends and act as a biological clock, preventing normal cells from replicating indefinitely. Mammalian telomeres are replicated throughout S-phase in a predetermined order. However, the mechanism of this regulation is still unknown. We wished to investigate this phenomenon under physiological conditions in a changing environment, such as the immortalization process to better understand the mechanism for its control. We thus examined the timing of human telomere replication in normal and SV40 immortalized cells, which are cytogenetically very similar to cancer cells. We found that the timing of telomere replication was globally conserved under different conditions during the immortalization process. The timing of telomere replication was conserved despite changes in telomere length due to endogenous telomerase reactivation, in duplicated homologous chromosomes, and in rearranged chromosomes. Importantly, translocated telomeres, possessing their initial subtelomere, retained the replication timing of their homolog, independently of the proportion of the translocated arm, even when the remaining flanking DNA is restricted to its subtelomere, the closest chromosome-specific sequences (inferior to 500 kb). Our observations support the notion that subtelomere regions strongly influence the replication timing of the associated telomere.

Digital object identifier (DOI): 10.1038/srep32510

J Med Case Rep, 10, 203

Acute promyelocytic leukemia with the translocation t(15;17)(q22;q21) associated with t(1;2)(q42~43;q11.2~12): a case report.

Wafa, Abdulsamad, Moassass, Faten, Liehr, Thomas, Al-Ablog, Ayman, Al-Achkar, Walid

Acute promyelocytic leukemia is characterized by a typical reciprocal translocation t(15;17)(q22;q21). Additional chromosomal abnormalities are reported in only 23-43 \% of cases of acute promyelocytic leukemia.Here we report the case of a 46-year-old Syrian Alawis woman with acute promyelocytic leukemia with the typical t(15;17) translocation, but with a second clone presenting a t(1;2)(q42~43;q11.2~12) translocation as an additional abnormality. To the best of our knowledge, an association between these chromosomal abnormalities has not previously been described in the literature. Our patient started treatment with all-trans retinoic acid 10 days after diagnosis but died the same day of treatment initiation due to hemolysis, intracranial hemorrhage, thrombocytopenia, and disseminated intravascular coagulation.The here reported combination of aberrations in a case of acute promyelocytic leukemia seems to indicate an adverse prognosis, and possibly shows that all-trans retinoic acid treatment may be contraindicated in such cases.

Digital object identifier (DOI): 10.1186/s13256-016-0982-8

Atom Indonesia, 42(2), 71-77

Comparison of Radiosensitivity of Human Chromosomes 1, 2 and 4 from One Healthy Donor

Ramadhani, Purnami, Yoshida

In general, it was assumed that the chromosome aberration induced by ionizing radiation is proportional to the chromosome size. From this viewpoint, the higher chromosome size, the more resistant to radiation. However, different opinions, in which chromosomes are particularly sensitive or resistant to radiation, are also still followed until now. Here in this research, we compared the chromosome sensitivity between chromosomes number 1, 2, and 4 using the FISH (fluorescence in situ hybridization) technique. From this research, we expect that the information obtained could show clearly whether a longer chromosome is more frequently involved in translocations and also more resistant to radiation than a shorter one. The type of chromosome aberration considered was limited only to translocation and we used one sample donor in order to avoid donor variability. The whole blood from a healthy female was irradiated with γ-rays with doses of 1, 3 and 5 Gy, respectively. Isolated lymphocytes from the whole blood were then cultured for 48 hours. After the culture process was completed, preparations of harvest and metaphase chromosomes were carried out. Chromosomes 1, 2, and 4 were stained with different fluorochromes. The translocation of each chromosome at each dose point was subsequently evaluated from 50 images obtained from an automated metaphase finder and capturing system. An additional analysis was performed to identify which chromosome arm was more frequently involved in translocation. Further analyses were also conducted with the aim of determining which chromosome band had a higher frequency of radiation-induced breakage. The experimental results showed that chromosome number 4 was more frequently involved in translocations compared to chromosomes 1 and 2 at 5 Gy. In contrast, at doses of 1 and 3 Gy translocations involving chromosomes number 1 and 2 were more numerous compared to the ones involving chromosome 4. However, if the number of translocation was accumulated for all the doses applied, the chromosome number 4 was the chromosome most frequently involved in translocations. Breakpoint analysis revealed that in chromosome 1, chromosome 2, and chromosome 4, the highest chromosome bands as break position were in band q32, p13, and q21, respectively. It can be concluded that chromosome 4 is more sensitive to radiation in all doses point, despite having less DNA content than chromosomes 1 and 2. Thus, it was showed that our research cannot support the general assumption about chromosome aberration induced by radiation being proportional to DNA content.

Nat Commun, 7, 10529

RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair.

Lescale, Chloé, Abramowski, Vincent, Bedora-Faure, Marie, Murigneux, Valentine, Vera, Gabriella, Roth, David B., Revy, Patrick, de Villartay, Jean-Pierre, Deriano, Ludovic

XRCC4-like factor (XLF) functions in classical non-homologous end-joining (cNHEJ) but is dispensable for the repair of DNA double-strand breaks (DSBs) generated during V(D)J recombination. A long-standing hypothesis proposes that, in addition to its canonical nuclease activity, the RAG1/2 proteins participate in the DNA repair phase of V(D)J recombination. Here we show that in the context of RAG2 lacking the C-terminus domain (Rag2(c/c) mice), XLF deficiency leads to a profound lymphopenia associated with a severe defect in V(D)J recombination and, in the absence of p53, increased genomic instability at V(D)J sites. In addition, Rag2(c/c) XLF(-/-) p53(-/-) mice develop aggressive pro-B cell lymphomas bearing complex chromosomal translocations and gene amplifications involving Igh and c-myc/pvt1 loci. Our results reveal an unanticipated functional interplay between the RAG complex and XLF in repairing RAG-induced DSBs and maintaining genome integrity during antigen receptor gene assembly.

Digital object identifier (DOI): 10.1038/ncomms10529

Mol Cytogenet, 4, 16

Biclonal myelodysplastic syndrome involving six chromosomes and monoallelicloss of RB1 - A rare case.

Walid Al-Achkar, Abdulsamad Wafa, Elisabeth Klein, Abdulmunim Aljapawe

ABSTRACT:Myelodysplastic syndrome (MDS) represents a group of clonal hematological disorders characterized by progressive cytopenia, and reflects to defects in erythroid, myeloid and megakaryocytic maturation. MDS is more frequently observed in older aged patients with cytogenetic abnormalities like monosomy of chromosome(s) 5 and/or 7. In 50\% of de novo MDS cases, chromosomal aberrations are found and rearrangements involving the retinoblastoma (RB1) gene in 13q14 are found.Here, we are presenting a case report of a rare biclonal MDS with a karyotype of 45, XY,-4, der(6)t(4;6)(p15.1;p21.3), der(8)t(4;8)(q31.2;q22), t(13;16)(q21.3;p11.2)11/45, XY, der(7)t(7;13)(p22.2~22.3;q21.3),-13 9. The patient was diagnosed according to WHO classification as refractory anemia with excess of blasts (RAEB-II).Immunophenotyping was positive for CD11b, CD11c, CD10, CD13, CD15, CD16 and CD33.We report, a novel and cytogenetically rare case of a biclonal MDS with complex chromosomal aberrations and deletion of RB1-gene in both clones. These findings are associated with a poor prognosis as the patient died 3 months after diagnosis.