About 100 guests from 36 countries met on the XVIII. MetaSystems Distributor Meeting (DM) in November to exchange experiences and to get to know new trends and developments at MetaSystems.

Our internet site may contain information that is not approved in all countries or regions. To ensure accuracy of content, please select your country/region of residence. Choose International if your country is not listed.
This information will be saved using cookies. To find out more about cookies, read our Privacy Policy.
Please select your country of residence. Choose International if your country is not listed.
Our internet site may contain information that is not approved in all countries or regions. To ensure accuracy of content, it is required that you select the site which is appropriate for your country of residence.
XL FUS BA consists of an orange-labeled probe hybridizing proximal to the FUS gene region at 16p11.2 and a green-labeled probe hybridizing distal to the FUS gene region at 16p11.2.
Probe maps are created in accordance with the intended purpose of the product. Solid colored bars do not necessarily indicate that the probe fully covers the indicated genomic region. Therefore, caution is advised when interpreting results generated through off-label use. Probe map details based on UCSC Genome Browser GRCh37/hg19. Map components not to scale. Further information is available on request.
Myxoid liposarcomas (MLS) are accounting for about 30% of liposarcomas and represent approximately 10% of adult soft tissue sarcomas. Patients with MLS showing progression to round-cell morphology have an inferior outcome. The most common aberration in MLS is the translocation t(12;16)(q13;p11) with a frequency of about 95% and to a much lesser extend t(12;22)(q13;q12), in which FUS is not involved. These reciprocal translocations are resulting in the generation of FUS-DDIT3 and EWSR1-DDIT3 fusion genes, respectively. As FUS is also involved in the development of low-grade fibromyxoid sarcoma with the rearrangement t(7;16)(q33;p11), FUS rearrangements are not highly specific for the detection of MLS. Human models of sarcomagenesis suggest that the FUS-DDIT3 fusion gene impedes with adipogenic differentiation of mesenchymal stem cells and thereby contributes to the development of liposarcoma.
Normal Cell:
Two green-orange colocalization/fusion signals (2GO).
Aberrant Cell (typical results):
One green-orange colocalization/fusion signal (1GO), one separate green (1G) and orange (1O) signal each resulting from a chromosome break in the relevant locus.
Certificate of Analysis (CoA)
or go to CoA Database